Notes on Completion: Please refer to the appropriate NIA Governance Document to assist in the completion of this form. The full completed submission should not exceed 6 pages in total.

NIA Project Registration and PEA Document

Date of Submission	Project Reference Number
Mar 2013	
Project Registration	
Project Title	
Sensor Networks (Smart Dust)	
Project Reference Number	Project Licensee(s)
	National Grid Electricity Distribution
Project Start	Project Duration
April 2008	7 years and 0 months
Nominated Project Contact(s)	Project Budget
WPD Future Networks Team (01332 827446)	£462,000.00

Summary

Smartdust is a concept developed by the University of California that is based on a self-configuring wireless sensor network, capable of transmitting low bandwidth information in a series of short hops. Data acquired and transmitted from sensors is relayed through a gateway for data interpretation. SP led a feasibility study into the use of this technology for detecting the passage of fault currents on 11kV overhead line networks.

Following on from this work, a collaborative project was scoped with SP to develop a product based on this principle for the remote signalling of fault passage indication on overhead line networks.

Problem Being Solved

Method(s)

Scope

Objective(s)

Fault Passage Indicators (FPIs) are pole mounted sensors that detect the passage of fault current in an overhead line via disturbances in the electro-magnetic field. Presently FPIs indicate the passage of a fault current via LED or beacon on the unit itself. This is used by linesmen on patrols to identify the source of the fault.

A cheap and reliable method of collection of fault passage indication data, a centralised location for overhead line faults would significantly reduce the time required to resolve faults on the network and consequently reduce Customer Minutes Lost (CML) associated penalties. This technology would be especially suited to transitory fault location.

Significant analysis has been undertaken on the deployment characteristics of GSM/GPRS fault passage indicators Vs radio communicating sensors, using fault histories. The analysis is considering the relationship between sensor cost, deployment penetration and improvement to CML figures.

The key conclusion is that a cheap, low power semi-mesh radio based system:

• Allows a much higher percentage of locations of be monitored economically than any other option, across all price points and time savings

• Offers a much higher NPV than any other option.

Owing to these factors, a significantly higher percentage of network can be monitored (from 10% for GSM devices to above 70% coverage for radio sensors), increasing the likelihood that they will be targeting faults (rather than solely focussing on worst performing circuits).

Consumer Vulnerability Impact Assessment (RIIO-2 Projects Only)

n/a

Success Criteria

n/a

Project Partners and External Funding

n/a

Potential for New Learning

n/a

Scale of Project

n/a

Geographical Area

Revenue Allowed for the RIIO Settlement

Indicative Total NIA Project Expenditure

Project Eligibility Assessment Part 1

There are slightly differing requirements for RIIO-1 and RIIO-2 NIA projects. This is noted in each case, with the requirement numbers listed for both where they differ (shown as RIIO-2 / RIIO-1).

Requirement 1

Facilitate the energy system transition and/or benefit consumers in vulnerable situations (Please complete sections 3.1.1 and 3.1.2 for RIIO-2 projects only)

Please answer at least one of the following:

How the Project has the potential to facilitate the energy system transition:

n/a

How the Project has potential to benefit consumer in vulnerable situations:

n/a

Requirement 2 / 2b

Has the potential to deliver net benefits to consumers

Project must have the potential to deliver a Solution that delivers a net benefit to consumers of the Gas Transporter and/or Electricity Transmission or Electricity Distribution licensee, as the context requires. This could include delivering a Solution at a lower cost than the most efficient Method currently in use on the GB Gas Transportation System, the Gas Transporter's and/or Electricity Transmission or Electricity Distribution licensee's network, or wider benefits, such as social or environmental.

Please provide an estimate of the saving if the Problem is solved (RIIO-1 projects only)

n/a

Please provide a calculation of the expected benefits the Solution

n/a

Please provide an estimate of how replicable the Method is across GB

n/a

Please provide an outline of the costs of rolling out the Method across GB.

n/a

Requirement 3 / 1

Involve Research, Development or Demonstration

A RIO-1 NIA Project must have the potential to have a Direct Impact on a Network Licensee's network or the operations of the System Operator and involve the Research, Development, or Demonstration of at least one of the following (please tick which applies):

A specific piece of new (i.e. unproven in GB, or where a method has been trialled outside GB the Network Licensee must justify repeating it as part of a project) equipment (including control and communications system software).

□ A specific novel arrangement or application of existing licensee equipment (including control and/or communications systems and/or software)

 $\hfill\square$ A specific novel operational practice directly related to the operation of the Network Licensees system

 $\hfill\square$ A specific novel commercial arrangement

RIIO-2 Projects

□ A specific piece of new equipment (including monitoring, control and communications systems and software)

□ A specific piece of new technology (including analysis and modelling systems or software), in relation to which the Method is

unproven

A new methodology (including the identification of specific new procedures or techniques used to identify, select, process, and analyse information)

A specific novel arrangement or application of existing gas transportation, electricity transmission or electricity distribution equipment, technology or methodology

A specific novel operational practice directly related to the operation of the GB Gas Transportation System, electricity transmission or electricity distribution

□ A specific novel commercial arrangement

Specific Requirements 4 / 2a

Please explain how the learning that will be generated could be used by the relevant Network Licensees

Or, please describe what specific challenge identified in the Network Licensee's innovation strategy that is being addressed by the project (RIIO-1 only)

n/a

□ Has the Potential to Develop Learning That Can be Applied by all Relevant Network Licensees

Is the default IPR position being applied?

Yes

Please demonstrate how the learning from the project can be successfully disseminated to Network Licensees and other interested parties.

Please describe how many potential constraints or costs caused, or resulting from the imposed IPR arrangements.<

Please justify why the proposed IPR arrangements provide value for money for customers.

Project Eligibility Assessment Part 2

Not lead to unnecessary duplication

A Project must not lead to unnecessary duplication of any other Project, including but not limited to IFI, LCNF, NIA, NIC or SIF projects already registered, being carried out or completed.

Please demonstrate below that no unnecessary duplication will occur as a result of the Project.

n/a

If applicable, justify why you are undertaking a Project similar to those being carried out by any other Network Licensees.

n/a

Additional Governance And Document Upload

Please identify why the project is innovative and has not been tried before

n/a

Relevant Foreground IPR

n/a

Data Access Details

n/a

Please identify why the Network Licensees will not fund the project as apart of it's business and usual activities

n/a

Please identify why the project can only be undertaken with the support of the NIA, including reference to the specific risks(e.g. commercial, technical, operational or regulatory) associated with the project

n/a

This project has been approved by a senior member of staff

✓ Yes