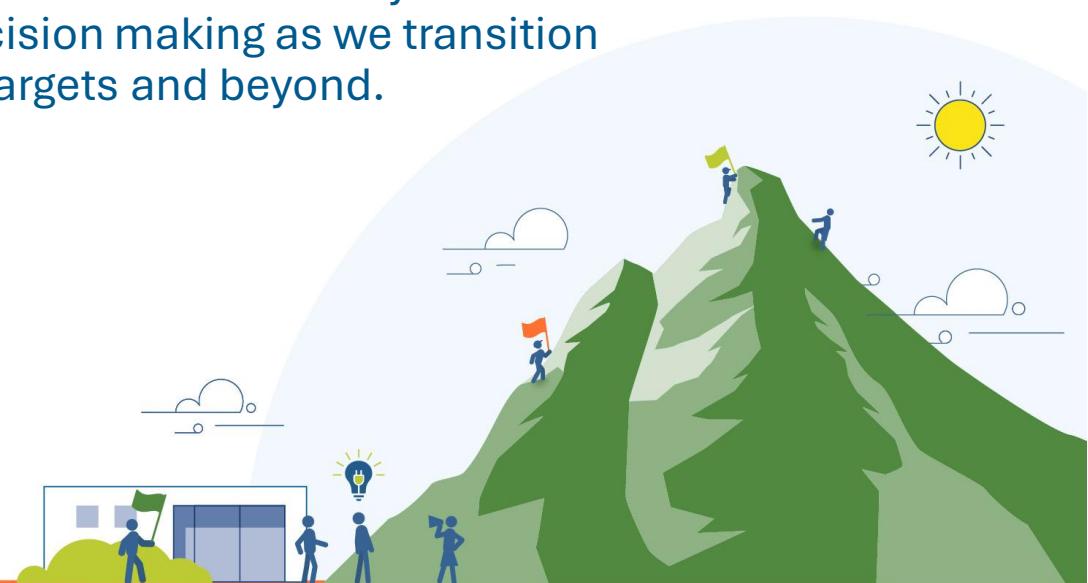


Innovation Basecamp 2026

4th February 2026 – Park Plaza, London

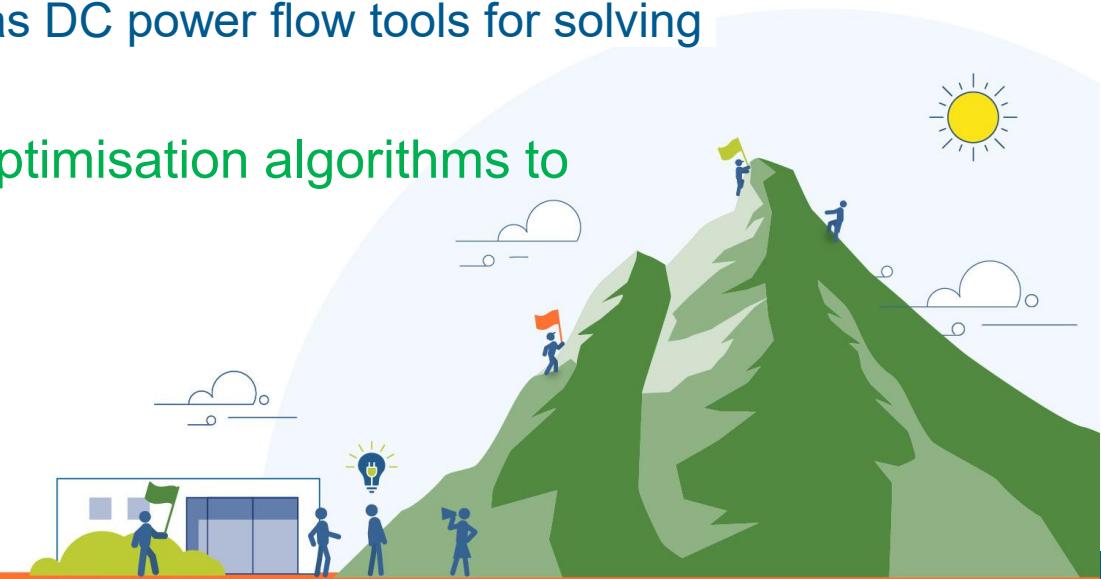
EIP162 – NTO Stability


Anna Blackwell / Ian Dytham

Introduction

National Energy System Operator (NESO)

- NESO is responsible for planning and delivering the energy of today and the future.
- We operate the GB electricity system and have a gas planning role.
- Within this, the Network Control Programme is working to enhance the Electricity National Control Centre (ENCC) situational awareness tooling, supporting decision making as we transition towards a zero-carbon grid meeting the Governments CP30 targets and beyond.


Background Information

- Integration of renewable energy sources is increasing network constraints, driving up balancing costs.
- Network topology changes offers a cost-effective solution to reduce congestion.
- Currently operators use experience and knowledge to identify topology changes.
- The GB electricity network is highly complex, with increasing dynamic stability constraint management requirements.
- A recent NIA project has shown that existing stability algorithms are complex and unsuitable to use in optimisation algorithms.
- How can we develop scalable voltage and stability optimisation algorithms to enable future automation of NTO processes?

What are the Problems?

- The transition from traditional synchronous generation to inverter-based renewables has decreased the inertia and short-circuit levels, increasing the occurrence of dynamic stability constraints.
- Network topology changes are increasing needing to consider dynamic stability.
- Any Network Topology Optimisation (NTO) solution will need to run algorithms for voltage and stability alongside traditional power flow.
- Stability and voltage optimisation tools are not as mature as DC power flow tools for solving multiple scenarios accurately and rapidly.
- **How can we develop scalable voltage and stability optimisation algorithms to enable future automation of NTO processes?**

Our Expectations

What are we looking for?

- **Solution Expectations:**
- We are looking for new methods and techniques that improve optimisation algorithms that can be used for determining voltage and stability power system limitations on the transmission network.
- Techniques should be scalable to work in near real-time and consider significant number of scenarios to optimise the network
- This can be delivered either as research, or as a tested product.
- **Non-negotiables:**
- The solution must have the potential to work with network planning tools (e.g. Powerfactory), either in their existing format, or through future development to those tools.

IMPORTANT


**It is important for all innovators to note
that we are looking for plans rather than
just ideas as solutions.**

Key Contacts:

- **For further information / Clarity:**
- **This builds on the NIA funded report into Network Topology Optimisation (NIA2_NESO087) which highlights the speed of AC Load Flow Solvers as a key area to advance in order to achieve automation of NTO.**
- Please email innovation@neso.energy if you require further clarifications including Basecamp – EIP162 in the subject line
- **ANY QUESTIONS?**

Energy Networks Association
4 More London Riverside
London SE1 2AU
t. +44 (0)20 4599 7700
[@EnergyNetworks](https://twitter.com/EnergyNetworks)
energynetworks.org

© ENA 2023

Energy Networks Association Limited is a company registered in England & Wales No. 04832301
Registered office: 4 More London Riverside, London SE1 2AU

The voice of the networks

Subscribe to our
newsletter to
receive updates
from ENA

[energynetworks.org/
subscribe](https://energynetworks.org/subscribe)

Scan me

