

Energy Innovation Summit, Oct 29-30, 2024

VoltXpanse: Ultra High Voltage Onshore Energy Highway

Dr. Xiaolin Ding

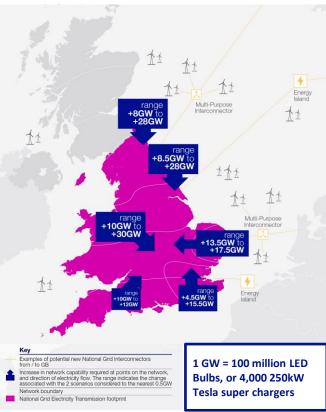
Net Zero Innovation, NGET

nationalgrid

Introduction

Energy transition to Net Zero

Offshore windSolarInterconnectorsBattery storage4.5 to 6 times
growth in capacity2.5 to 5 times
growth in capacity2.5 to 3 times
growth in capacity4.5 to 10 times
growth in capacity


At the same time cross sector electrification is expected to increase total electricity demand by around 50%.⁵

Need to substantially increase the network capacity

Ultra High Voltage (UHV) transmission technologies

- Lower transmission losses
- Significant Increased capacity
- Reduced environmental impact
- Better power flow control capability (for UHVDC)

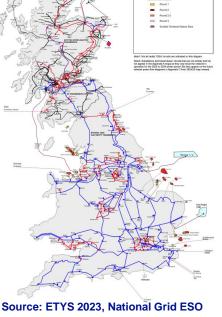
National Grid | VoltXpanse @ EIS 2024 | 29 - 30 October 2024

What is VoltXpanse?

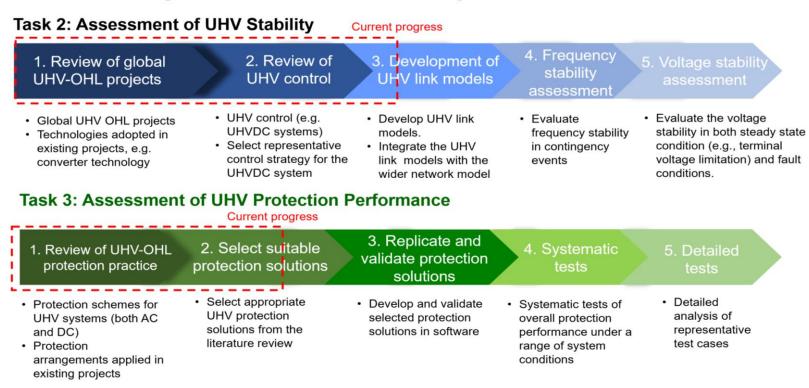
VoltXpanse (NIA project) aims to investigate innovative UHV transmission solutions that significantly increase the network capacity needed while also reducing environmental impacts.

- Identifying strategic UHV solutions for GB network onshore reinforcement
- Understanding the impacts of UHV circuits on system stability, protection, and control.
- Assessing the feasibility of an innovative compact tower design for UHV overhead line (OHL) circuits
- Investigating alternative technological and routing solutions required to ensure the deliverability of UHV circuits
- Recommending an optimal strategy to deliver the UHV circuits in an economic, efficient, and environmentally friendly way

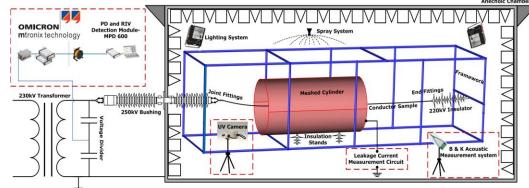
Collaboration with SPEN, SSEN and HVDC centre


Scope of work

Work Package 1	Work Package 2 Compact Tower Design	Work Package 3 Technological Feasibility	Work Package 4 Optimal Delivery Strategy
 Identifying locations and capacities of UHV circuits Assessing UHV circuits' impact on system stability Simulating and evaluating the system's protection performance 	 Reviewing overhead line and tower design criteria adopted worldwide Recommending compact tower design options Assessing audible noise and electromagnetic field implications of different overhead line and tower systems 	 Investigating the cutting- edge technologies that are alternative to overhead lines, e.g. UHV cables, gas-insulated lines, etc. Investigating HVDC technology and fractional frequency transmission systems Assessing routing and 	 Evaluating each of the identified UHV solutions with regards to their technical deliverability, life cycle costs, reliability, network operability, carbo footprints, etc. Developing an optimal strategy for UHV delivery
University of Strathclyde	MANCHESTER 1824 The University of Manchester	consenting implications	ARUF

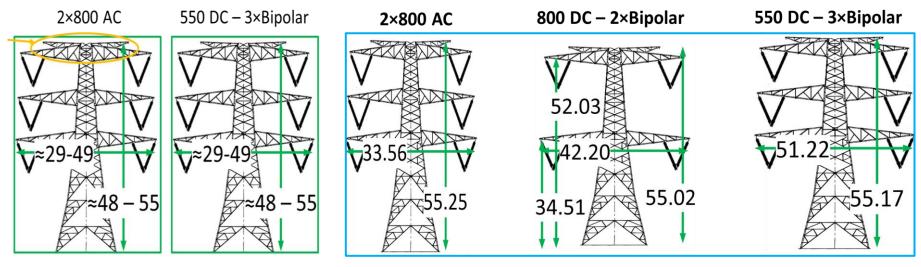

Task 1: strategic locations and capacities of UHV circuits 400kV Substations 275 kV Substations **Current progress** 2. Development of **1. Credible set of future** 3. Assessment of UHVDC **Representative GB** transmission needs operation conditions transmission system Development of a network Credible operating conditions Identify the stratigic model that includes the 275 for years up to 2050 location and capacities of kV and above transmission UHV transmission lines · Development of a method to lines in England and Wales, generate future operational and 132 kV and above lines Pathways framework 2024 conditions in Scotland

Task 2 & 3 Progress: Studies of UHV Stability and Protection



National Grid | VoltXpanse @ EIS 2024 | 29 - 30 October 2024

Anechoic Chamber


- Literature Review on UHV OHL Design Criteria
 - Design practices implemented for UHV systems
 - Existing UHV OHL Systems with defined/specified design criteria
 - Tower Design Criteria
- Audible Noise Experimentation on Single Conductors
 - Test 3 type of conductors for both UHV AC & DC under dry and wet conditions.
 - AN level of DC is generally lower than AC systems

Preliminary Tower Design

Modifying the shield design

Preliminary design considering Emf & Audible noises limits

ARUP

Investigate UHV cable section solutions

Cable :

- Strong incentives in increasing DC cable voltage, but not for AC cable.
- DC cables up to 640kV achieved.
- No CIGRE or IEC specifications > 500kV for AC cable; CIGRE recommendations up to 800kV available for DC cable.
- More choices for DC cable solutions (XLPE, XLPEn, HTPE, etc.) than AC cables (XLPE)
- Substantial amount of installation engineering feasibility would have to be carried out.

- First 400kV g3 installation in Sellindge, UK
- In service >5 years
- Leak rate marginally higher than equivalent SF6 leak rate

Gas-insulated lines:

- Maximum capacity: 2850 MVA (at 500 kV)
- Maximum current rating: up to 4,500A
- Typical voltages: 245 kV-500 kV
- Longest distance: 3.3 km (realised, 275 kV)
- Energy losses: 0.0015% km at 500 kV and 260 MW
- Standard definition: IEEE Std C37.122.4-2016
- Expected lifetime: > 60 years

UHVDC technology:

- Choices of DC technologies (LCC, VSC or hybrid)
- Different DC configurations: monopole, bi-pole, multiterminal
- Challenges such as overloading capability, overvoltage stress, control and protection, DC fault clearing, etc.
- Highest VSC rating: ±800kV, 3kA, circa 5GW
- Highest LCC rating: ±1100kV, 5.5kA, 12GW
- VSC converter rating is limited by the rating of IGBT

HVDC VSC (diagram source: ABB) National Grid | VoltXpanse @ EIS 2024 | 29 – 30 October 2024

Low frequency transmission (LFT):

- Increase power transmission capability
- Can use existing HVAC lines, circuit breakers, and protection relays (with adapted settings).
- Real and reactive power flow and voltage control
- Potential to form multi-terminal meshed configurations using existing AC circuit breakers

- Voltage 220kV
- Maximum Power Capacity 300MW
- Distance:13.2 km
- Commissioning date: June 2023

Look Ahead

VoltXpanse will work closely with all key stakeholders to advance investigations within each work package. The primary areas of focus include :

- Identifying strategic locations of UHV circuits in the GB network while comprehending their potential impacts.
- Designing compact tower in detail
- Developing an optimal delivery strategy for UHV solutions in the UK

Q&A

