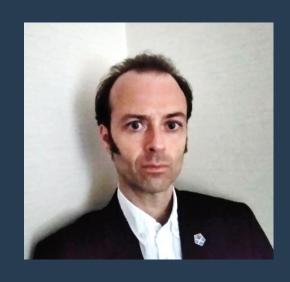


Energy Innovation Summit 2025

IN PARTNERSHIP WITH:



PRESENTERS AND RUNNING ORDER

Fraser MacIntyre Innovation Project Manager SSEN

Bruce Stephen Reader University of Strathclyde

- 1. Who we are
- 2. Problem and Barriers
- 3. Project Overview
- 4. User Journey
- 5. Data Needs
- 6. Identification of user need through Agentic AI
- 7. POC Demo

SSEN DISTRIBUTION

WHO WE ARE

We're Scottish and Southern Electricity Networks (SSEN) Distribution. We're the Distribution Network Operator (DNO) responsible for delivering power to almost 4 million homes and businesses across central southern England and the north of Scotland.

We serve some of the UK's most remote communities - and some of the most densely populated. Our two networks cover the greatest land mass of any UK DNO, covering 72 local authority areas and 75,000km² of extremely diverse terrain. We're also at the forefront of delivering the decarbonised electricity system of the future, connecting new low-carbon technologies to the network. Through this, we're helping support sustainable economic growth for decades to come.

SSEN DISTRIBUTION NETWORK AT A GLANCE

Nearly 4 million homes and businesses

Over **128,000km** of overhead lines and underground cables

Over **460km** of subsea cables powering our island communities

Over **4,400** employees across the country

North of Scotland
SSEH/SHEPD LICENCE AREA


Central Southern Englar SSES/SEPD LICENCE AREA

PROBLEMS AND BARRIERS

The Current Situation

Barriers

- Complex and varied stakeholder needs
- Wide range of stakeholder expertise
- Large number of siloed and fragmented data sets
- Data is inconsistent
- Real-time data is incomplete by nature
- Volume: NeRDA looks at 1
 million data tags and consumes
 9.6M data points every 24 hours

PROJECT OVERVIEW

Straight to Alpha

WP1
Project management

WP2
Regulatory framework

WP3
User journeys

CATAPULT

Roadnight Taylor

Roadnight Taylor

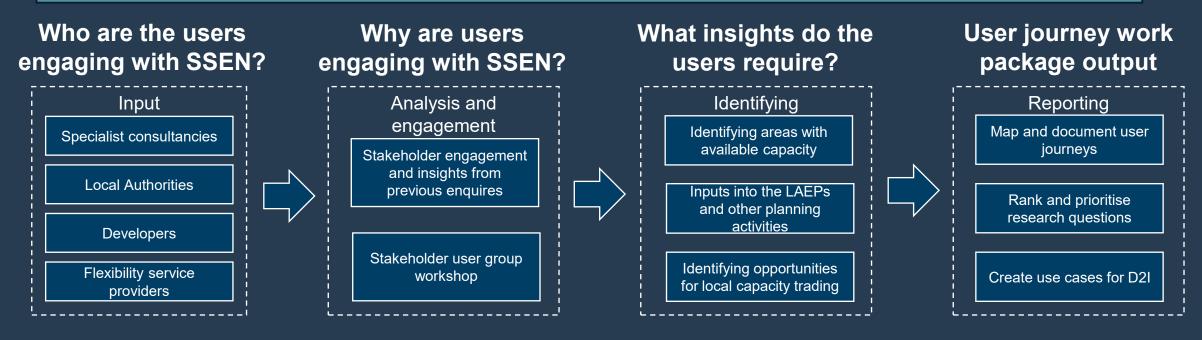
WP4
Data needs

WP5
Solution implementation

Strathclyde Strathclyde Glasgow

Scottish & Southern Electricity Networks

CG


WP6
Dissemination and
CBA

Scottish & Southern
Electricity Networks
CATAPUT
Ca

WP3: USER JOURNEY

SSEN are publishing **vast quantities of data** through their open data portals. It is unknown if users are gaining the most value from this data? The user journey work package looked to **understand user motivations** for engaging with SSEN. This will **enable D2I** to develop a **user centric tool** to **support users gain more** value from SSEN's open data.

A user journey is a path a user may take to reach their goal when using a particular application. User journeys are used in designing applications to identify the different ways to enable the user to achieve their goal as quickly and easily as possible.

WP3: USER JOURNEY

Method

The research happened in **3 phases**:

- 1. Documents reviewed were:
 - 227 SSEN data requests over 2 years
 - 76 responses from a user feedback survey
 - o 4 open data personas
 - Slido survey results from a SSEN Data Surgery
- 2. Conducted **9 x 1-to-1** interviews with a range of different stakeholders
- 3. Tested with the **AI Proof of Concept** with stakeholders

Key Findings

The primary users of the **NeRDA** portal look to use the data to facilitate grid connections: **50**% of SSEN data queries received are related to grid connections.

The full **grid connection journey** has been mapped, revealing multiple opportunities where an Al tool could provide value.

These use cases span both the planning stages of connecting to the grid and tasks that involve querying or manipulating grid-related data.

Specific Al Findings

The AI tool could increase the efficiency of the grid connection process: Users see potential in AI to reduce response time.

But users also feel that AI could introduce risks: Users feel there is a risk of AI providing incorrect or misleading information.

Those with **less grid connection experience** would require support in knowing how to effectively interact with or query the AI.

Al needs to be able to **adapt to the variations** in the grid connection journey.

WP4: DATA NEEDS AND ENRICHMENT

Barriers

- Complex and varied stakeholder needs
- Wide range of stakeholder expertise
- Large number of siloed and fragmented data sets
- Data is inconsistent
- Real-time data is incomplete by nature
- Volume: e.g. NeRDA looks at 1 million data tags and consumes
 9.6m data points every 24 hours

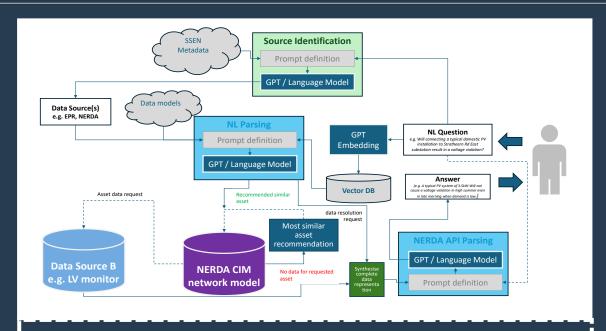
Solution Functionality

Natural language interface that can accommodate domain terminology specific to Open Data sets

User profiling and recognition of use case archetypes through iterative dialog

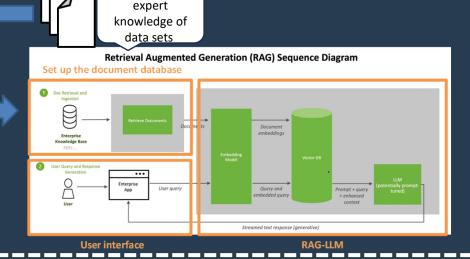
Data interfaces that are aware of their capabilities and past use cases

Means of corroborating returned queries across multiple data sources


Completion of returned query data using either closest similar or most plausible data points inferred from use case

Ability to divide queries into subtasks that can be executed across multiple nodes; refinement of queries through iterative user engagement to minimise search space.

USER NEED THROUGH AN AGENTIC AI INTERFACE



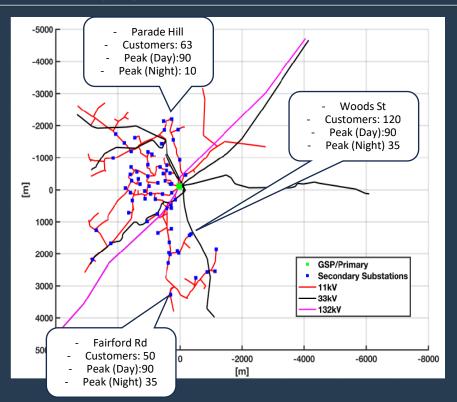
Natural language interface advances a user query to an insight:

- Iterative completion of a use case template through two way dialog with the user
- Based around a RAG-LLM:
 - A Large Language Model (LLM) provides the ability to parse and generate coherent text
 - Retrieval Augmented Generation (RAG) specialises this to domain terminology and concepts.

Even within a DNO, Open Data sets are specialised and created in isolation. To open these up, D2I:

- Provides data sets with an RAG-LLM interface which makes them aware of their contents, potential use cases and limitations
- Open Data RAG-LLM trained on internal reports and transcripts of structured interviews with the data set owners
- Captures expert terminology, experience of usage and tacit know Transcripts of

DATA RECONSTRUCTION, RECOMMENDATION AND **SYNTHESIS**

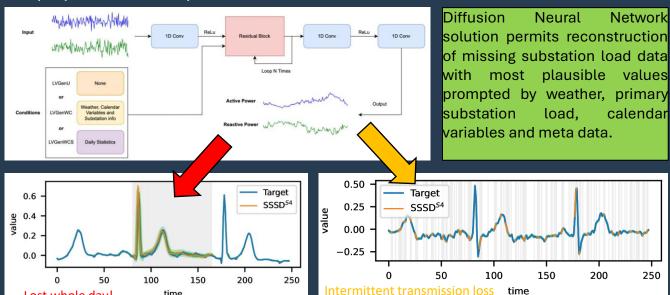

Network

values

primary

calendar

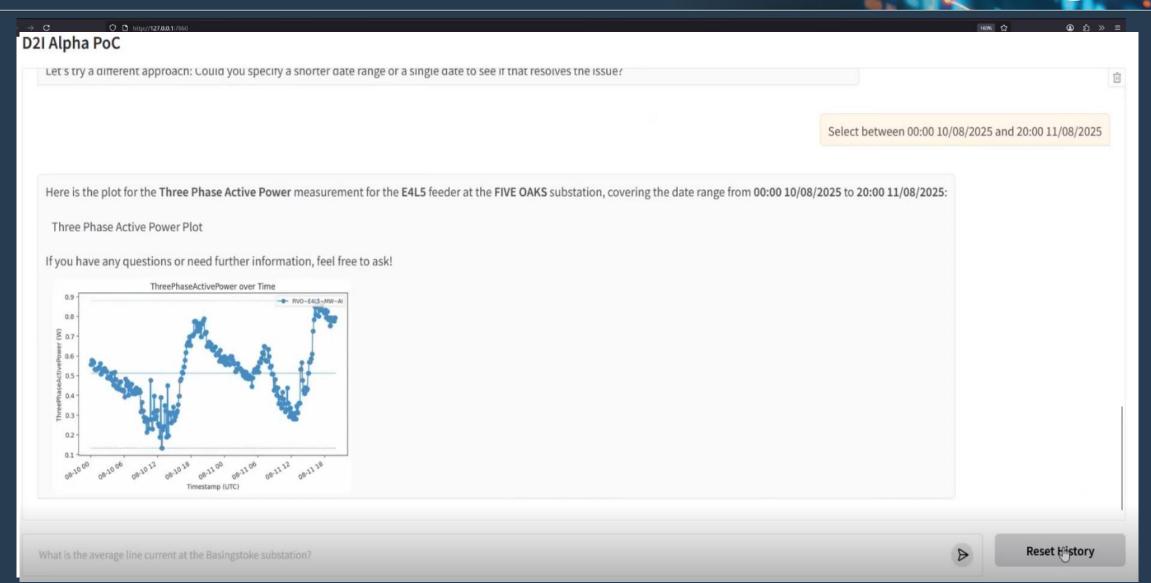
250



Not all assets are monitored; to generate an insight for a query D2I will use recommender system models to:

- Use most similar asset by meta data (e.g. customers connected, peak load)
- Use asset in closest spatial proximity
- Traverse a network connectivity (e.g. CIM) model to find asset peers with data

Not all assets carry the same level of monitoring; observations (e.g. LV monitors) may be low resolution, interrupted by communications failure, have limited history or be absent altogether. The D2I solution for this is to use GenerativeAI models on LV load measurements from the NeRDA platform to synthesise some or all of a time series to automatically:


- Recreate an entire missing day of load data
- Fill in random missing values from an interrupted monitor
- Create a plausible profile for an unmonitored asset
- Increase the resolution of the data if the insight requires it (superresolution)

Lost whole day

POC DEMO

NEXT STEPS

> Visit the SSEN stand on M7 to receive a demo and interact with the D2I Proof of Concept.

