

Angle – DC

Andrew Moon – Lead Innovation Engineer Future Networks

- TNO and DNO for Southern and Central Scotland
- DNO for Merseyside and North Wales
- 44,000km Overhead Lines
- 65,000km Underground Cables
- Over 3000 substations
- A Total of 3.5 Million Customers

The Future Networks team are delivering our innovation strategy through;

- Industry leading expertise
- Concentrating on creating a positive and lasting impact on the future of distribution and transmission
- Two major fields of focus black start and power electronics

Black Start

Black Start since 2015 Range of partners Built expertise and capabilities

Power Electronics

Implementation across voltages on transmission and distribution networks

VISOR

Greater visibility of network state and assets

FITNESS

Efficient and effective digital substation

Distributed Restart

DERs supporting the network and restoring power

Synthesis

Advanced analytics and real-time control enabling rapid response to system disturbances **£13.59m** further **investment** for **SPT**, estimated **£40m** for other GB Transmission business

£54m investment in RIIO-2

Business plan - digital substations - Westfield and Hunterston

£5m Green Recovery Fund: Synergy

2023-SIF: Black-start from the offshore

Phoenix

Synchronous condensers + static compensator technologies - manage reduced inertia and voltage control on Transmission Network.

Angle-DC

Medium Voltage DC (**MVDC**) link to Anglesey, *I* increased **renewable generation** integration.

LV Engine

Trial of innovative **Smart Transformers** for the connection of **LCTs**

£120m investment in **RIIO-2** Business plan implementation of **synchronous condensers** at **Eccles**

3 further sites planned to roll out **LV Engine Technology** within **RIIO-ED2**

Content

01 Project Overview

- Project Aims
- Project Structure

02 MVDC System Design & Technical Information

- MVDC Converter and DC Link
- Design Standards
- System Protection & Operation
- MVDC Commissioning Tests

03 Project Benefits

- Increased Distributed Generation Hosting Capacity
- Reduced Losses

04 Lessons Learned

Project Overview

7

- £14.8m Ofgem funded
- Network Innovation
- Competition project (NIC).
- Ground-breaking project,
 - Improve network capacity and performance.
 - Forming a Medium Voltage Direct Current (MVDC) link
 - Converting an AC interconnector to DC
 - Provides Power flow control

Concept

- 33kVAC cable/OHL circuit utilised for DC operation.
- Control real/reactive power flows, voltage
- Increase in DER capacity.
- Learning from AC to DC Conversion.
- Learning: install, operate and manage a MVDC link.

AC to DC Conversion

- Symmetrical monopole.
- Existing 2 x paralleled 33kV circuits AC (in green).
- AC-DC converters installed at both substations.

MVDC Link System Design & Technical Information

- Operating Voltage + /-27kVDC (54kVDC between poles)
 - 33kVAC infeed -> 2.1kVAC and connected to each inverter module.
 - Inverter modules input = 2.1kVAC, output = 4.5kVDC.
 - $6 \times inverter$ modules connected in series per pole ($6 \times 4.5 kV = 27 kV$)
- Power Transfer mode (30MVA) between substations
- STATCOM mode (+/-15MVAr) voltage support to the 33kVAC busbars.
- Inverters/circuit are "pre-charged" to overcome in-rush current.
- Poles are mid-point earthed. Earth fault return path.

MVDC Station Electrical Layout

MVDC Station Physical Layout

Bangor Converter Station

Llanfair PG Converter Station

Converter Transformers

- 2 x 17.5 MVA Transformers
- Oil natural Air Natural Cooling
- 33kV AC Input.
- 2.1kV AC Output into Converter Modules

AC/DC Converters Modules

- 12 Modules Total (6 Pos leg, 6 Neg leg)
- 2.1kV AC Input
- 4.5kV AC Output
- IGBT power electronic switches

DC Reactor

- 10mH Rated Inductance
- Smoothing DC output current
- Space to protect from Electromagnetic field effects

Pre-Charge Unit

- Pre-charge transformer & disconnector
- 2.1kV AC pre-charge of the system
- Reduces mag-inrush currents during energisation of converter transformers

DC Control Room

- Converter Controllers, enabling local operation
- LV Supplies
- Partial Discharge Monitoring
- Telecomms, RTU

Mid-Point Resistor

- 10Ω Banked Resistor, connected to Positive and Negative Legs of DC link
- Provides return path for current during faults.
- Sensor to detect current and operate protection

ltem	Standard	Key Findings
Cable/OHL Conversion	IEC 61975	 HV pressure tested, cable/OHL intact. MVDC Commissioning tests – High Power tests, cable/OHL performed well. Partial Discharge results to follow.
Harmonics	G5	 MVDC Commissioning tests – THD below limits. No impact above 6th Harmonic. Limited harmonic current below 6th harmonic.
Control	IEC 60870	 Control of both stations operating as expected. Control of both converter stations from Bangor via fibre link. RTU link back to Control Room for remote operation/start- up/shutdown.
EMC	EN 50121 IEC-TR 62543	 No EMC impact on Network Rail assets. Monitoring continued through first 6 months of operation to detect any voltage issues.
Protection	IEC 60255	 Protection of both AC and DC systems. During commissioning tests, protection operated as expected.

Common Safety Method – Risk Assessment

Results of initial commissioning tests shown below. Tests completed in 3 stages;
1) Low Power Steady State Tests
2) High Power Transmission Tests
3) Step Response Tests

MVDC Link Commissioning

- A Common Safety Method for Risk Evaluation and Assessment (CSM-RA)
- Evaluated the AC to DC conversion at commissioning
- Monitoring showed compliant DC harmonic and Electromagnetic Compatibility
- Negligible maximum harmonic currents above 6th harmonic were found

Project Benefits

22

Remote Operation

DG hosting capacity up to 15% can be achieved in the Anglesey network

Remote Operation

UNIVERSITY PRIFYSGOL

Power losses over a day of the network by using MVDC link and the original AC operation

Strategy	Daily Average Power Loss (MW)	Daily Energy Loss (MWh)
AC operation	1.556	37.35
Control strategy for PLR	0.562	13.49
Control strategy for FLB	0.578	13.87
Control strategy for VPI	0.673	16.15
Compromise control strategy 1	0.607	14.58
Compromise control strategy 2	0.613	14.72

Lessons Learned

25

EMC Safety Case

- Complex and challenging study.
- Learning can inform future MVDC systems.

Cybersecurity

- Cybersecurity constantly changing.
- In-depth and rigorous cybersecurity requirements.

Station Cooling

- Building Environment is like a data centre.
- CAPEX vs OPEX costs for closed and open systems.
- Volume of Module housing.

DC Protection

• High Impedance pole to ground faults.

Questions

