

EIS 2024

SF₆ Whole Life Strategy

Prem Ranjan Senior Innovation Engineer NGET

nationalgrid

Contents

SF₆ – usage and challenges

Proposed solutions

Work packages and deliverables

Impact, benefits and engagement

nationalgrid

Looking Ahead – Q&A

Project consortium for Beta Phase

Funding – The project is funded by network users and consumers under the Strategic Innovation Fund (SIF), an Ofgem program managed in partnership with UKRI.

SF₆ in the GB Power Sector

Annual Emissions of SF_6 between 2012 and 2022 rose by

~47%

SF₆ inventory within GB transmission substations

1100 tonnes

% of National Grid's scope 1 emissions from SF_6 leakage (excluding losses)

92%

National Grid has the ambition to reduce SF_6 emissions by

50% by 2030

And committed to Net Zero by

2050

SF₆ Whole Life Related Challenges

Project Overview (Alpha)

Supporting the development of an economic, efficient and holistic replacement strategy for SF_6 -free that will support GB's ambition to facilitate a net-zero and resilient energy system

Partners	Key Activities	Innovation Challenge
national grid MANCHESTER	Develop and assess options available for replacing SF ₆ use across all network assets	 Challenge 3: Improving energy system resilience and robustness Strengthening the UK's energy system robustness to support efficient roll out of new infrastructure
Scottish & Southern Electricity Networks	 Sampling of aged SF₆ alternative gas mixtures from live equipment to assess gas stability 	
TRANSMISSION	 Laboratory scale testing of novel SF₆ disposal method 	
DNV	Develop a model to forecast when leakages are likely to occur	
	 Undertake a techno-economic analysis of the interventions available for replacing SF₆ gas. 	

National Grid

What we've been doing in Alpha?

Project Highlights

Key Insights and Benefits of Project

- WP1 there is limited user-experience for replacement intervention strategies such as retrofill therefore a high throughput and realistic failure mechanism analysis, would inform the development of innovative in-situ condition monitoring techniques/tools to evaluate in-situ performance of SF₆ alternatives.
- WP2 primary results show no formation of by-products, and sampled gas blends are stable within operational range
- WP3 laboratory scale testing of Packed Bed Plasma reactors demonstrated it as a viable alternative to conventional SF6 disposal methods with benefits around scaling up, energy efficiency and offering the opportunity for better chemical recycling of SF6

National Grid

Key Insights and Benefits of Project

SARIMA model pressure forecast for a substation

 WP4 - forecasts with models developed in project show the meaningful general trends and the trend variance can be used to estimate the time for next possible top-up. However, more complex machine learning approaches may be required for large, labelled datasets. There is a need to acquire data from the assets that are in the middle of their lifetime to investigate the transitional patterns from normal operation to stages with increased leak rates.

National Grid

Key Insights and Benefits of Project

Figure 1. Leakage profile for NGET's SF₆ equipment inventory categorised by age and leak rate. Note that the leakage rate is a converted value from record of gas top-up operation

WP5 – while it is more beneficial to undertake SF6 interventions sooner rather than later however the need to undertake SF_6 driven works must be balanced with supply chain, outage and regulatory considerations in a staged and secure way

WP6 - in every instance it was always more advantageous both economically and environmentally to invest in an intervention. The cost of interventions are dwarfed by the benefits of lower emissions, calculated on the basis of societal cost of carbon and the cost of purchasing carbon credits National Grid

Looking Ahead - Implementation of Strategies

nationalgrid