

Velocity Design with Hydrogen

Innes Maciver

Future of Energy Project Manager

Classified as Internal

Agenda

Current Network	01
The Problem – $H_2 vs CH_4$	02
Project Scope	03
Initial Results	04
Next Steps	05
Closing Remarks	06

Current Network

Gas velocities are governed by IGEM technical standards including IGEM/TD/1, TD3, TD4 and TD/13. This is to manage the impacts from particle transport, erosion, noise and vibration.

Filtered Gas 400 Filtered Gas

Unfiltered Gas 2007/S

The Problem H₂ vs CH₄

Energy Content

Hydrogen has approximately one third the energy by volume of Natural Gas

Increased Consumption This would result in consumers having to use 3 times the volume to achieve the same energy output

Network Upgrades To match this energy requirement without increasing pressure or velocity would incur significant mains reinforcement costs

The Problem H_2 vs CH_4

Energy Content

Hydrogen has approximately one third the energy by volume of Natural Gas

Increased Consumption This would result in consumers having to use 3 times the volume to achieve the same energy output

Network Upgrades To match this energy requirement without increasing pressure or velocity would incur significant mains reinforcement costs

The Problem H₂ vs CH₄

Energy Content

Hydrogen has approximately one third the energy by volume of Natural Gas

Increased Consumption This would result in consumers having to use 3 times the volume to achieve the same energy output

Network Upgrades To match this energy requirement without increasing pressure or velocity would incur significant mains reinforcement costs

Project Scope

The key questions this project is looking to address are...

Particle Transport

Does particle transport increase when flowing gas at higher velocities?

Erosion

02

Is there a change in pipe erosion rates between hydrogen and Natural Gas?

03

Vibration & Noise

Does vibration and noise increase when flowing hydrogen at higher velocities?

Classified as Internal

Initial Results

- Both experimental work completed to date and modelling predictions (British Gas model and CFD) indicate that particles are mobile at the lower velocity limit currently used on the gas network (20m/s).
- Particle transportation occurs at lower velocities for Natural Gas than for hydrogen.
- An increase in velocity from 20m/s for Natural Gas to 70m/s for hydrogen should therefore not result in a corresponding increase in particle transport.

