Minimising visual (and environmental impact) of new network infrastructure

<table>
<thead>
<tr>
<th>Project Sponsor</th>
<th>SME</th>
<th>Project Manager</th>
<th>Project Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENA</td>
<td>TBC</td>
<td>TBC</td>
<td></td>
</tr>
</tbody>
</table>

Problem & Opportunity

Problem
- The consenting of new major infrastructure is a controversial and debated public topic
- Objections to environmental impacts, including visual impact, is leading to objections to planning consent.
- OHL towers and lines have the largest visual impacts

Current Practice
- Generally, infrastructure is designed to a traditional lattice tower that has been established for many years
- The visual impact of OHL lattice towers has not changed

Opportunity
- New designs and technologies that can reduce the visual impact of OHL’s

Innovation Justification

Giving the public confidence that the visual impact of new infrastructure has been minimised may help alleviate public concerns and accelerate the consenting process.

Project Summary

We invite ideas for:
- New designs that reduce the visual impact of OHL lattice towers.
- Novel ideas that can help blend lattice towers into the landscape
- Tools that allow optimised routing that facilitates reduced visual impacts on local stakeholders.
Notes

• Low Profile 132kV Steel Poles - SSEN-T

• Stakeholder attitudes to electricity infrastructure. This project addresses a problem that is common to all network companies. The InspireGrid component draws collaboratively on understandings and best practice across Europe to develop an improved understanding of the underlying issues and principles. The studentship builds on the track record of work in this area from the academic group concerned. Stakeholder attitudes to electricity infrastructure | ENA Innovation Portal (energynetworks.org)

• Substation Compaction A number of options for reducing the footprint of substations using conventional Air-Insulated Switchgear (AIS) have been identified. A compact AIS design would have advantages in applications where restrictions in the available land are encountered. For example, such a design might allow extension bays to be constructed within an existing substation boundary where space is restricted. Substation Compaction | ENA Innovation Portal (energynetworks.org)