

Content

- 01 Introduction.
- 02 Where Have We Been?
- 03 Where Are We Going?
- 04 The D-Suite Solution.
- 06 Journey So Far.
- 05 Why It Matters.

01 Introduction – Project and Partners

SIF Beta Round 2

Total Budget: **£8.96m**; SIF Funding Request: **£8.06m**, with the following:

- SPEN: **£6.17m**, Project Lead.

- UKPN: **£0.18m,** DNO Partner.

- Integrated Powertech: £0.89m Power Electronic Device (PED) Expert Partner.

- Newcastle University: **£0.82m** Academic Partner – LV Design tool Lead.

#	Name	Title	Representing	Email
1	Andrew Moon	Lead Innovation Engineer	SP Energy Networks	A.Moon@ScottishPower.com
2	Matt Deakin	Royal Academy of Engineering Research Fellow	Newcastle University	Matthew.Deakin@Newcastle.ac.uk
3	Wenlong Ming	Director	IPT	WenlongMing@gmail.com
4	Andrew Burton	Innovation Engineer	UK Power Networks	Andrew.Burton@ukpowernetworks.co.uk

02 Where Have We Been?

LV Engine

March 2018 – Dec 2024 (completed)

Key achievements to-date:

- Manufactured all equipment.
- Established IT system integration.
- Carried out integration testing.
- Monitored performance and reported.
- 3 substations live and operational.

02 Where Have We Been?

02 Where Have We Been?

FUN-LV & Active Response (UKPN)

March 2018 – Nov 2023 (completed)

Key LV PED achievements to-date:

Manufacture and trial of 2T and 3T Soft Open Points to TRL 9.

- Improvements in several metrics including:
 - Noise reduction
 - Efficiency improvements
 - Physical size reduction
 - Improved cooling design
 - Higher current carrying capacity

Test modes to TRL 7 additional including:

- Voltage constraint mode preventing port voltage going outside statutory limits
- Voltage balancing
- Reactive power setpoint control
- Phase balancing
- Harmonic attenuation

03 Where Are We Going?

Decarbonisation is driving unprecedented change to the LV network:

- 600,000 HP/year from 2028.
- 300,00 EV chargers by 2030.
- 85GW peak demand GB wide by 2050.

LV networks will experience:

- Increasing voltage excursions.
- High circuit and transformer utilisation.
- All compounded by large phase imbalances.

LV PEDs can mitigate these issues, but:

- Are currently not cost competitive.
- Placed sub optimally on the LV network and are not optimally rated.
- Lack low-cost current balancing solutions.

04 The D-Suite Solution

Used a Suite of Distribution Power Electronic Devices

- 1. D-SOP,
- 2. D-STATCOM and
- 3. D-ST.

Reduce Cost and Optimise

- ✓ Remove DC Networks and metering from D-ST Gen2.
- ✓ Model the D-Suite PED Performance through Net-Zero.
- ✓ Optimally place and size the correct PED Type.

Reduce Size and Rating

- ✓ From modelling, specify the most common optimum rating for developing PED products.
- Prioritise network services, avoid all at once.
- ✓ Use high temperature Power Electronics

Remove PED Complexity From Decision Making

- ✓ Avoid high training requirements (LV Designers).
- ✓ Use preapproved LV design tools to aid decision making.

04 The D-Suite Solution - Who's Doing What

Project Oversight

Local Authority Council leaders and Academic Board Members
SPM Director, Trial District General Managers, Future Networks Manager and Network Planning Lead Sponsor.

Lead

Main Tasks

Outputs

WP1 - Detailed design & D-Suite Design Tool.

D-Suite **LV Design Tool**.

PED Failure Mode and Effect Analysis.

PED protection design a strategy.

Testing specification & platform development.

D-Suite Planning Tool Module.
UKPN Integration Report.
PNDC & HiL TS and Platform.
D-Suite PED Procurement Documents.

WP2 - Procurement, Installation and Commissioning.

Procurement, development, full installation and commissioning of all **D-Suite PED** and **Network Level Control System (NLCS)**.

Signed Procurement Contracts.

NLCS Factory Testing Report (FAT).

PED FAT and Commissioning Report.

WP3 - Trial & Operational Performance.

A **Network Trial** - 3 trial locations in SPM. Continuous data collection. Monthly result analysis. Operational Performance Report. Report on Trial Analysis Finding for Application on UKPN Networks.

WP4 - BaU Integration.

LV Design Tool verification. Drafting and review of policies

Reviewed Policy Documents.

WP5 - Project Management, Stakeholder Engagement & Dissemination.

Webinars.

National and international conferences. Regulatory Reporting. Submitted and accepted:
Conference papers
Webinar videos
Output reports and annual reports

04 The D-Suite Solution – How Long Wil It Take?

05 Journey So Far

D-Suite's Beta application has been de-risked by the work and findings from the Discovery and Alpha phases with learnings from each ensuring the success of a solution adoptable across the UK.

- New PED Suppliers.
- Protection experts.
- PE Consultancy.

Rollout

- LV Design Tool Disseminated.
- Collective LV Design Tool assessments.
- PED volumes 36,270 DNOs).

Alpha

- Prototype LV Design Tool.
- Phase imbalance mitigation benefits.
- Optimum PED design.
- PQQ feedback and **Functional TS**

Design tool. • Detailed hardware

Production Ready LV

Beta

- TS.
- D-Suite PED and NLCS Trial.
- Operational performance results.
- BaU integration.

Discovery

- Market research of D-PED technologies.
- D-Suite Hardware Specifications.
- LCT impact 6 SPEN network types.

Deployments (All

05 Journey So Far – LV Design Tool

Main Progress

- 1. Newcastle University Control Response modelling code developed and installed into SPEN NCEWS 2 Platform (NAVI).
- 2. NU-NAVI team workshop to propose user journey based on outputs of User Requirements workshop.

05 Journey So Far - LV Design Tool

The User Experience – The Most Important Part

05 Journey So Far – Testing Platform Development

Hardware prototyping of D-suite modules

- 1. Completed simulation models for two key D-Suite devices: D-STATCOM and D-SOP.
- 2. Completed open-loop hardware testing of a modular D-Suite unit in the lab.
- 3. Prepared next steps for closed-loop testing to replicate real-world operation of D-Suite devices.
- 4. Maintained alignment with SPEN to ensure all work directly supports technical specifications.

Contribution to Success

- ✓ Expands the simulation and testing toolkit needed for safe, scalable deployment of D-Suite devices.
- ✓ Confirms modular designs work as expected in real-world lab conditions, reducing the risk of later-stage failures.
- ✓ Strengthens readiness for future acceptance testing and supports long-term business-as-usual rollout

05 Journey So Far – PED Technical Specification

- The technical specifications of the D-Suite devices are progressing as planned. Expected an initial draft of D-ST technical specification issued August 2025.
- Market engagement continues in terms of identifying more potential supplier
- Carrying out factory visits for those manufacturers with no relationship with SPEN before.
- Approval committee appointment scoping and market engagement is ongoing

D-Suite

Technical specifications **Smart Transformer**

		SP Energy Networks
1.	Definitions	3
2.	Key standards and SPEN documents	3
3.	Purpose of this document	5
4.	D-Suite project overview	5
5.	Product definitions	6
6.	Service conditions	8
7.	Key electrical parameters	9
8.	Normal Operating conditions	9
9.	Delivery of Core Services	9
10.	Priority services	11
11.	Bypass capability	12
12.	General Safety requirements	12
13.	Insulation requirements	13
14.	Clearance and creepage	13
15.	Earthing arrangement	13
16.	Sound Power	14
17.	Terminations	14
18.	Protection requirements	15
19.	Progress Inspections	15
20	Enclosure/Tank construction	15
		1.6

06 Why It Matters

By the year **2040**,

- Planned works instead of reactive works—LCT Rollout.
- Fast Installation and recovery of units under approved planning method.
- Up to 10% of the reinforcement volume could be D-Suite PED.

Financial

- Traditional Reinforcement average cost of all types.
- 1.5% annual inflation rate applied to traditional reinforcement cost.
- D-Suite PED OPEX 2% of CAPEX.
- D-Suite PED volume cost reduction £250/kVA to £62/kVA by 2040.

Societal

- £9.8 k per feeder due to DER hosting capacity uplift.
- Traditional solutions marginal capacity uplift.

Environmental

- CO2 savings PV capacity uplift:
- 162gCO2/kWh PV panel lifecycle emissions: 41gCO2/kWh = Δ = 121gCO2/kWh

Questions?

