

Innovation Basecamp 2026

4th February 2026 – Park Plaza, London

Introduction

We deliver electricity to eight million customers (27% of the UK population) over an area of 55,000km².

Background Information

We're seeing a trend of conductor drops and OHL joint failures where tree contact is not the cause across our 11kV and 33kV lines

Evidence suggests end-of-life deterioration is driving failures:

- **loss of mechanical strength, corrosion, fretting fatigue, legacy construction standards, ageing.**

Current methods (visual inspection + age-based modelling) do not provide direct, field-based evidence of mechanical condition.

What are the Problems?

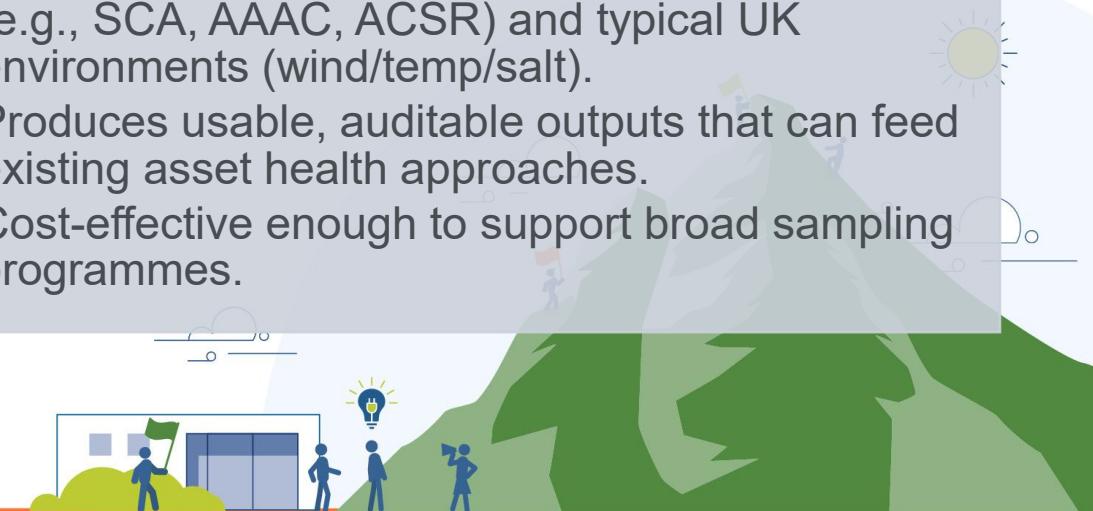
Consequence of the evidence gap:

- can't reliably identify highest-risk spans / jumpers / joints
- leads to unplanned outages, safety risk, and high emergency repair cost.

Relevant “what’s been tried / what exists already” (and the gap):

- Drone and OHL inspection trials: improved visibility, but still visual / geometry, not tensile integrity.
- LiDAR / high-res imagery: good for clearance/structure, not mechanical strength.
- Dynamic Line Rating: measures temperature/sag, not conductor/joint integrity.
- Predictive / analytical programmes (e.g., PROACTIVE): helpful prioritisation, but still lacking direct NDT-type inputs.
- Drone-based PD detection: electrical condition, not mechanical integrity.

Our Expectations


What are we looking for?

Solution expectations

- Non-destructive methods that can quantify degradation/mechanical health (examples welcome):
- magnetic flux leakage (ACSR), guided-wave ultrasonics, eddy current, acoustic emission, etc.
- Short-duration deployment (one-off measurement or temporary fit), ideally minutes not hours.
- Live-line / no planned outage operation.
- Deployment options that work in practice:
- drone-deployed clamp/payload, hot-stick/hot-glove, brief contact-on tests
- Applicable to legacy UK conductors and joints, not just new-build designs.

Non-negotiables

- Must directly measure (not infer purely from Artificial Intelligence/Machine Learning).
- Non-permanent install (no long-term fittings required).
- Must comply with live-working practices and relevant standards / ESQCR constraints.
- Works across common legacy conductor types (e.g., SCA, AAAC, ACSR) and typical UK environments (wind/temp/salt).
- Produces usable, auditable outputs that can feed existing asset health approaches.
- Cost-effective enough to support broad sampling programmes.

IMPORTANT

**It is important for all innovators to note
that we are looking for plans rather than
just ideas as solutions.**

Key Contacts:

- For further information / Clarity: nged.innovation@nationalgrid.co.uk
- ANY QUESTIONS?

Energy Networks Association
4 More London Riverside
London SE1 2AU
t. +44 (0)20 4599 7700
[@EnergyNetworks](https://twitter.com/EnergyNetworks)
energynetworks.org

© ENA 2023

Energy Networks Association Limited is a company registered in England & Wales No. 04832301
Registered office: 4 More London Riverside, London SE1 2AU

The voice of the networks

Subscribe to our
newsletter to
receive updates
from ENA

[energynetworks.org/
subscribe](https://energynetworks.org/subscribe)

Scan me

